Тепловой баланс земной поверхности и атмосферы

Атмосфера Земли.

Поглощая лучистую энергию Солнца, Земля сама становится источником излучения. Однако радиация Солнца и радиация Земли существенно различны. Прямая, рассеянная и отраженная радиация Солнца имеет длину волн, заключающуюся в интервале от 0,17 до 2—4 мк, и называется коротковолновой радиацией. Нагретая поверхность земли в соответствии со своей температурой излучает радиацию в основном в интервале длин волн от 2—4 до 40 мк и называется длинноволновой. Вообще говоря, как радиация Солнца, так и радиация Земли имеют волны всех длин. Но основная часть энергии (99,9%) заключается в указанном интервале длин волн. Различие в длине волн радиации Солнца и Земли играет большую роль в тепловом режиме поверхности земли.

Таким образом, нагреваясь лучами Солнца, наша планета сама становится источником излучения. Испускаемые земной поверхностью длинноволновые, или тепловые, лучи, направленные снизу вверх, в зависимости от длины волны или беспрепятственно уходят через атмосферу, или задерживаются ею. Установлено, что излучение волн длиной 9—12 мк свободно уходит в межзвездное пространство, вследствие чего поверхность земли теряет некоторую часть своего тепла.

Для решения задачи теплового баланса земной поверхности и атмосферы следовало определить, какое количество солнечной энергии поступает в различные районы Земли и какое количество этой энергии преобразуется в другие виды.

Попытки рассчитать количество поступающей солнечной энергии на земную поверхность относятся к середине XIX века, после того как были созданы первые актинометрические приборы. Однако только в 40-х годах XX века началась широкая разработка задачи изучения теплового баланса. Этому способствовало широкое развитие актинометрической сети станций в послевоенные годы, особенно в период подготовки к Международному Геофизическому Году. Только в СССР число актинометрических станций к началу МГГ достигло 200. При этом значительно расширился объем наблюдений на этих станциях. Кроме измерения коротковолновой радиации Солнца, определялся радиационный баланс земной поверхности, т. е. разность между поглощенной коротковолновой радиацией и длинноволновым эффективным излучением подстилающей поверхности. На ряде актинометрических станций были организованы наблюдения за температурой и влажностью воздуха на высотах. Это позволило произвести вычисления затрат тепла на испарение и турбулентный теплообмен.

Помимо систематических актинометрических наблюдений, ведущихся на сети наземных актинометрических станций по однотипной программе, в последние годы проводятся экспериментальные работы по исследованию радиационных потоков в свободной атмосфере. С этой целью на ряде станций с помощью специальных радиозондов производятся систематические измерения баланса длинноволновой радиации на различных высотах в тропосфере. Эти наблюдения, а также данные о потоках радиации в свободной атмосфере, полученные с помощью свободных аэростатов, самолетов, геофизических ракет и искусственных спутников Земли, позволили изучить режим составляющих теплового баланса.

Используя материалы экспериментальных исследований и широко применяя расчетные методы, сотрудниками Главной геофизической обсерватории им. А. И. Воейкова Т. Г. Берлянд, Н. А. Ефимовой, Л. И. Зубенок, Л. А. Строкиной, К. Я. Винниковым и другими под руководством М. И. Будыко в начале 50-х годов впервые была построена серия карт составляющих теплового баланса для всего земного шара. Эта серия карт вначале была опубликована в 1955 г. В изданном Атласе содержались карты суммарного распределения солнечной радиации, радиационного баланса, затраты тепла на испарение и турбулентный теплообмен в среднем за каждый месяц и год. В последующие годы, в связи с получением новых данных, особенно за период МГГ, были уточнены данные составляющих теплового баланса и построена новая серия карт, которые были изданы в 1963 г.

Тепловой баланс земной поверхности и атмосферы, учитывая приток и отдачу тепла для системы Земля — атмосфера, отражает закон сохранения энергии. Чтобы составить уравнение теплового баланса Земля — атмосфера, следует учесть все тепло — получаемое и расходуемое,— с одной стороны, всей Землей вместе с атмосферой, а с другой — отдельно подстилающей поверхностью земли (вместе с гидросферой и литосферой) и атмосферой. Поглощая лучистую энергию Солнца, земная поверхность часть этой энергии теряет через излучение. Остальная часть расходуется на нагревание этой поверхности и нижних слоев атмосферы, а также на испарение. Нагревание подстилающей поверхности сопровождается теплоотдачей в почву, а если почва влажная, то одновременно происходит затрата тепла и на испарение почвенной влаги.

Таким образом, тепловой баланс Земли в целом складывается из четырех составляющих.

Радиационный баланс (R). Он определяется разностью между количеством поглощенной коротковолновой радиации Солнца и длинноволновым эффективным излучением.

Теплообмен в почве, характеризующий процесс теплопередачи между поверхностными и более глубокими слоями почвы (А). Этот теплообмен зависит от теплоемкости и теплопроводности почвы.

Турбулентный теплообмен между земной поверхностью и атмосферой (Р). Он определяется количеством тепла, которое подстилающая поверхность получает или отдает атмосфере в зависимости от соотношения между температурами подстилающей поверхности и атмосферы.

Тепло, затрачиваемое на испарение (LE). Оно определяется произведением скрытой теплоты парообразования (L) на испарение (Е).

Эти составляющие теплового баланса связаны между собою следующим соотношением:

R=A+P+LE

Расчеты составляющих теплового баланса позволяют определить, как преобразуется на поверхности земли и в атмосфере приходящая солнечная энергия. В средних и высоких широтах приток солнечной радиации летом положителен, зимой отрицателен. Согласно вычислениям южнее 39° с. ш. баланс лучистой энергии положителен в течение всего года, На широте около 50° на Европейской территории СССР баланс положителен с марта по ноябрь и отрицателен в течение трех зимних месяцев. На широте 80° положительный радиационный баланс наблюдается лишь в период май — август.

В соответствии с расчетами теплового баланса Земли суммарная солнечная радиация, поглощенная поверхностью земли в целом, составляет 43% от солнечной радиации, приходящей на внешнюю границу атмосферы. Эффективное излучение с земной поверхности равно 15% этой величины, радиационный баланс — 28%, затрата тепла на испарение — 23% и турбулентная теплоотдача — 5%.

Рассмотрим теперь некоторые результаты расчета составляющих теплового баланса для системы Земля — атмосфера. Здесь приведены четыре карты: суммарной радиации за год, радиационного баланса, затраты тепла на испарение и затраты тепла на нагревание воздуха путем турбулентного теплообмена, заимствованные из Атласа теплового баланса земного шара (под ред. М. И. Будыко). Из карты, изображенной на рисунке 10, следует, что наибольшие годовые величины суммарной радиации приходятся на засушливые зоны Земли. В частности, в Сахарской и Аравийской пустынях суммарная радиация за год превышает 200 ккал/см2, а в высоких широтах обоих полушарий она не превышает 60—80 ккал/см2.

На рисунке 11 приведена карта радиационного баланса. Легко видеть, что в высоких и средних широтах радиационный баланс возрастает в сторону низких широт, что связано с увеличением суммарной и поглощенной радиации. Интересно отметить, что, в отличие от изолиний суммарной радиации, изолинии радиационного баланса при переходе с океанов на материки разрываются, что связано с различием альбедо и эффективного излучения. Последние меньше для водной поверхности, поэтому радиационный баланс океанов превышает радиационный баланс материков.

Наименьшие годовые суммы (около 60 ккал/см2) характерны для районов, где преобладает облачность, как и в сухих областях, где высокие значения альбедо и эффективного излучения уменьшают радиационный баланс. Наибольшие годовые суммы радиационного баланса (80—90 ккал/см2) характерны для малооблачных, но сравнительно влажных тропических лесов и саванн, где приход радиации хотя и значителен, однако альбедо и эффективное излучение больше, чем в пустынных районах Земли.

Распределение годовых величин испарения представлено на рисунке 12. Затрата тепла на испарение, равная произведению величины испарения на скрытую теплоту парообразования (LЕ), определяется в основном величиной испарения, так как скрытая теплота парообразования в естественных условиях меняется в небольших пределах и в среднем равна 600 кал на грамм испаряющейся воды.

Как следует из приведенного рисунка, испарение с суши в основном зависит от запасов тепла и влаги. Поэтому максимальные годовые суммы испарения с поверхности суши (до 1000 мм) имеют место в тропических широтах, где значительные тепловые

Суммарная солнечная радиация. Год

Радиационный баланс. Год

Испарение. Год

Турбулентный теплообмен

ресурсы сочетаются с большим увлажнением. Однако океаны являются наиболее важными источниками испарения. Максимальные величины его здесь достигают 2500—3000 мм. При этом наибольшее испарение происходит в районах со сравнительно высокими значениями температуры поверхностных вод, в частности в зонах теплых течений (Гольфстрим, Куро-Сиво и др.). Наоборот, в зонах холодных течений величины испарения небольшие. В средних широтах существует годовой ход испарения. При этом, в отличие от суши, максимальное испарение на океанах наблюдается в холодное время года, когда сочетаются большие вертикальные градиенты влажности воздуха с повышенными скоростями ветра.

Турбулентный теплообмен подстилающей поверхности с атмосферой зависит от радиационных условий и условий увлажнения. Поэтому наибольшая турбулентная передача тепла осуществляется в тех районах суши, где сочетается большой приток радиации с сухостью воздуха. Как видно из карты годовых величин турбулентного теплообмена (рис. 13), это зоны пустынь, где величина его достигает 60 ккал/см2. Малы величины турбулентного теплообмена в высоких широтах обоих полушарий, а также, на океанах. Максимумы годовых величин можно обнаружить в зоне теплых морских течений (более 30 ккал/см2год), где создаются большие разности температур между водой и воздухом. Поэтому наибольшая теплоотдача на океанах происходит в холодную часть года.

Тепловой баланс атмосферы определяется поглощением коротковолновой и корпускулярной радиации Солнца, длинноволнового излучения, лучистым и турбулентным теплообменом, адвекцией тепла, адиабатическими процессами и др. Данные о приходе и расходе солнечного тепла используются метеорологами для объяснения сложной циркуляции атмосферы и гидросферы, тепло- и влагооборота и многих других процессов и явлений, происходящих в воздушной и водной оболочках Земли.

 

Источник—

Погосян, Х.П. Атмосфера Земли/ Х.П. Погосян [и д.р.]. – М.: Просвещение, 1970.-  318 с.

 

Предыдущая глава ::: К содержанию ::: Следующая глава

Оцените статью
Adblock
detector