Оптические, звуковые и электрические явления в атмосфере

Основы общего землеведения.

Оптические явления. Как уже говорилось, при прохождении лучей Солнца через атмосферу часть прямой солнечной радиации поглощается молекулами воздуха, рассеивается к отражается. В результате этого в атмосфере наблюдаются различные оптические явления, воспринимаемые непосредственно нашим глазом. К числу таких явлений относятся: цвет неба, рефракция, миражи, гало, радуга, ложное солнце, световые столбы, световые кресты и др.

Цвет неба. Всем хорошо известно, что цвет неба в зависимости от состояния атмосферы меняется. Ясное безоблачное небо днем имеет голубой цвет. Этот цвет неба обусловлен тем, что в атмосфере много рассеянной солнечной радиации, в составе которой преобладают короткие волны, воспринимаемые нами как голубые или синие. Если воздух запылен, то меняется спектральный состав рассеянной радиации, ослабляется синева неба; небо становится белесоватым. Чем больше мутность воздуха, тем слабее синева неба.

С высотой цвет неба меняется. На высоте от 15 до 20 км цвет неба черно-фиолетовый. С вершин высоких гор цвет неба кажется густо-синим, а с поверхности Земли — голубым. Это изменение цвета от черно-фиолетового до светло-голубого обусловливается все возрастающим рассеиванием сначала фиолетовых, потом синих и голубых лучей.

При восходе и заходе Солнца, когда солнечные лучи проходят сквозь наибольшую толщу атмосферы и теряют при этом почти все коротковолновые лучи (фиолетовые и синие), а до глаза наблюдателя доходят только длинноволновые лучи, цвет части неба у горизонта и само Солнце имеет красную или оранжевую окраску.

Рефракция. В результате отражения и преломления солнечных лучей при их прохождении через слои воздуха различной плотности их траектория подвергается некоторым изменениям. Это приводит к тому, что небесные тела и отдаленные предметы на земной поверхности мы видим в направлении, несколько отличающемся от того, в котором они действительно расположены. Например, если мы смотрим на вершину горы из долины, то гора нам кажется приподнятой; при визировании с горы в долину замечается повышение дна долины.

Угол, образованный прямой линией, идущей от глаза наблюдателя до какой-либо точки, и направлением, в котором глаз видит эту точку, называется рефракцией.

Величина рефракции, наблюдаемой у земной поверхности, зависит от распределения плотности нижних слоев воздуха и от расстояния от наблюдателя до предмета. Плотность же воздуха зависит от температуры и давления. В среднем величина земной рефракции в зависимости от расстояния до наблюдаемых предметов при обычных атмосферных условиях равна:

Миражи. Явления миражей связаны с аномальной рефракцией солнечных лучей, которая вызывается резким изменением плотности воздуха в нижних слоях атмосферы. При мираже наблюдатель видит, кроме предметов, еще их изображения ниже или выше действительного положения предметов, а иногда справа или слева от них. Нередко наблюдатель может видеть только изображение, не видя самих предметов.

Если плотность воздуха с высотой резко падает, то изображение предметов наблюдается выше их действительного местонахождения. Так, например, при подобных условиях можно видеть силуэт корабля над уровнем моря, когда корабль скрыт от наблюдателя за горизонтом.

Нижние миражи часто наблюдаются на открытых равнинах, в особенности в пустынях, где плотность воздуха резко увеличивается с высотой. Человек в этом случае нередко видит в отдалении как бы водную, слегка волнующуюся поверхность. Если при этом на горизонте имеются какие-либо предметы, то они как бы поднимаются над этой водой. И в этом водном пространстве видны перевернутые, как бы отраженные в воде их очертания. Видимость водной поверхности на равнине создается в результате большой рефракции, обусловливающей обратное изображение внизу у земной поверхности части неба, находящегося позади предметов.

Гало. Под явлением гало понимаются светлые или радужные круги, наблюдаемые иногда вокруг Солнца или Луны. Гало бывает в том случае, когда эти небесные тела приходится видеть через легкие перистые облака или через пелену тумана, состоящего из взвешенных в воздухе ледяных иголочек (рис. 63).

Явление гало происходит вследствие преломления в ледяных кристалликах и отражения от их граней солнечных лучей.

Радуга. Радуга представляет собой большую разноцветную дугу, наблюдаемую обычно после дождя на фоне дождевых облаков, находящихся против той части неба, где светит Солнце. Величина дуги бывает различна, иногда наблюдается полный радужный полукруг. Нередко мы видим одновременно две радуги. Интенсивность развития отдельных цветов в радуге и ширина их полос различны. В хорошо видимой радуге с одного края располагается красный цвет, а с другой — фиолетовый; остальные цвета в радуге находятся в порядке цветов спектра.

Гало

Явления радуги обусловлены преломлением и отражением солнечных лучей в капельках воды, находящихся в атмосфере.

Звуковые явления в атмосфере. Продольные колебания частиц материи, распространяясь по материальной среде (по воздуху, воде и твердым телам) и достигнув уха человека, вызывают ощущения, называемые «звуком».

В атмосферном воздухе всегда находятся звуковые волны различной частоты и силы. Часть этих волн создается  искусственно   человеком,   а     часть     звуков      имеет     метеорологическое      происхождение.

К звукам метеорологического происхождения относятся гром, завывание ветра, гудение проводов, шум и шелест деревьев, «голос моря», звуки и шумы, возникающие при передвижении песчаных масс в пустынях и над дюнами, а также снежинок над гладкой поверхностью снега, звуки при падении на земную поверхность твердых и жидких осадков, звуки прибоя у берегов морей и озер и др. Остановимся на некоторых из них.

Гром наблюдается при явлениях грозового разряда. Возникает он в связи с особыми термодинамическими условиями, которые создаются на пути движения молнии. Обычно гром мы воспринимаем в виде ряда ударов — так называемых раскатов. Раскаты грома объясняются тем, что звуки, порождаемые в одно время вдоль длинного и обычно извилистого пути молнии, доходят до наблюдателя последовательно и с различной интенсивностью. Гром, несмотря на большую силу звука, слышится на расстоянии не более 20—25 км (в среднем около 15 км).

Завывание ветра происходит при быстром движении воздуха с завихриванием у каких-либо предметов. При этом бывает чередование накопления и оттока воздуха от предметов, что и дает начало звукам. Гудение проводов, шум и шелест деревьев, «голос моря» также связаны с движением воздуха.

«Голос моря» — своеобразное звуковое явление, наблюдаемое на морях. Эти звуковые явления бывают во время ветра и возникают от движения воздуха над гребнями и подошвами морских волн.

Скорость звука в атмосфере. На скорость распространения звука в атмосфере влияет температура и влажность воздуха, а также ветер (направление и его сила). В среднем скорость звука в атмосфере равна 333 м в секунду. С увеличением температуры воздуха скорость звука несколько возрастает. Изменение абсолютной влажности воздуха оказывает меньшее влияние на скорость звука. Ветер оказывает сильное влияние: скорость звука по направлению движения ветра увеличивается, против ветра — уменьшается.

Знание величины скорости распространения звука в атмосфере имеет большое значение при решении ряда задач по изучению верхних слоев атмосферы акустическим методом. Пользуясь средней скоростью звука в атмосфере, можно узнать расстояние от своего местонахождения до места возникновения грома. Для этого нужно определить число секунд между видимой вспышкой молнии и моментом прихода звука грома. Затем надо умножить среднее значение скорости звука в атмосфере — 333 м/сек. на полученное число секунд.

Эхо. Звуковые волны, подобно световым лучам, испытывают при переходе из одной среды в другую преломление и отражение. Звуковые волны могут отражаться от земной поверхности, от воды, от окружающих гор, облаков, от поверхности раздела воздушных слоев, имеющих различную температуру и влажность. Звук, отражаясь, может повториться. Явление повторения звуков вследствие отражения звуковых волн от различных поверхностей носит название «эхо».

Особенно часто эхо наблюдается в горах, вблизи скал, где громко произнесенное слово через некоторый промежуток времени повторяется один или несколько раз. Так, например, в долине Рейна имеется скала Лорелей, у которой эхо повторяется до 17—20 раз. Примером эхо являются и раскаты грома, которые возникают вследствие отражения звуков электрических разрядов от различных предметов на земной поверхности.

Электрические явления в атмосфере. Наблюдаемые в атмосфере электрические явления связаны с наличием в воздухе электрически заряженных атомов и молекул газов, носящих название ионов. Ионы бывают как с отрицательным, так и с положительным зарядом, а по величине массы делятся на легкие и тяжелые. Ионизация атмосферы происходит под воздействием коротковолновой части солнечной радиации, космических лучей и излучения радиоактивных веществ, содержащихся в земной коре и в самой атмосфере. Сущность ионизации заключается в том, что указанные ионизаторы передают нейтральной молекуле или атому газа воздуха энергию, под действием которой удаляется один из наружных электронов из сферы действия ядра. В результате этого атом, лишенный одного электрона, становится положительным легким ионом. Удалившийся из данного атома электрон быстро присоединяется к нейтральному атому и таким путем создается отрицательный легкий ион. Легкие ионы, встречаясь с взвешенными частицами воздуха, отдают им свой заряд и образуют таким образом тяжелые ионы.

Количество ионов в атмосфере с высотой увеличивается. В среднем на каждые 2 км высоты число их возрастает на тысячу ионов в одном куб. сантиметре. В высоких слоях атмосферы максимальная концентрация ионов наблюдается на высотах около 100 и 250 км.

Наличие в атмосфере ионов создает электропроводимость воздуха и электрическое поле в атмосфере.

Проводимость атмосферы создается благодаря большой подвижности главным образом легких ионов. Тяжелые ионы играют в этом отношении небольшую роль. Чем выше в воздухе концентрация легких ионов, тем больше его проводимость. И так как с высотой увеличивается число легких ионов, то и проводимость атмосферы с высотой возрастает. Так, например, на высоте 7—8 км проводимость, примерно, в 15—20 раз больше, чем у земной поверхности. На высоте около 100 км проводимость очень большая.

В чистом воздухе мало взвешенных частиц, поэтому в нем больше легких ионов и меньше тяжелых. В связи с этим проводимость чистого воздуха выше, чем проводимость запыленного. Поэтому при мгле и тумане проводимость имеет низкое значение, Электрическое поле в атмосфере впервые установил М. В. Ломоносов. При ясной безоблачной погоде напряженность поля считается нормальной. По отношению к

Огни Эльма

земной поверхности атмосфера заряжена положительно. Под влиянием электрического поля атмосферы и отрицательного поля земной поверхности устанавливается вертикальный ток положительных ионов от земной поверхности вверх, а отрицательных ионов из атмосферы вниз. Электрическое поле атмосферы вблизи земной поверхности чрезвычайно изменчиво и зависит от проводимости воздуха. Чем меньше проводимость атмосферы, тем больше напряженность электрического поля атмосферы. Проводимость же атмосферы в основном зависит от количества взвешенных в ней твердых и жидких частиц. Поэтому во время мглы, при осадках и тумане напряженность электрического поля атмосферы увеличивается и это нередко приводит к электрическим разрядам.

Огни Эльма. Во время гроз и шквалов летом или снежных бурь зимой можно иногда наблюдать электрические спокойные разряды на остриях предметов, выдающихся над земной поверхностью. Эти видимые разряды носят название «огней Эльма» (рис. 64). Чаще всего огни Эльма наблюдаются на мачтах, на вершинах гор; иногда они сопровождаются несильным потрескиванием.

Образуются огни Эльма при большой напряженности электрического поля. Напряженность бывает настолько велика, что ионы и электроны, двигаясь с большой скоростью, расщепляют на своем пути молекулы воздуха, отчего увеличивается число ионов и электронов в воздухе. В связи с этим возрастает проводимость воздуха и с острых предметов, где накапливается электричество, начинается истечение электричества и разрядка.

Молнии. В результате сложных термических и динамических процессов в грозовых облаках происходит разделение электрических зарядов: обычно отрицательные заряды располагаются в нижней части облака, положительные в верхней. В связи с таким разделением объемных зарядов внутри облаков создаются сильные электрические поля как внутри облаков, так и между ними. Напряженность поля у земной поверхности при этом может достигать нескольких сотен киловольт на 1 м. Большая напряженность электрического поля приводит к тому, что в атмосфере возникают электрические разряды. Сильные искровые электрические разряды, которые происходят между грозовыми облаками или между облаками и земной поверхностью, называются молниями.

Продолжительность вспышки молнии в среднем около 0,2 сек. Количество электричества, которое несет молния, составляет 10—50 кулонов. Сила тока бывает очень большой; иногда она достигает 100—150 тыс. ампер, но в большинстве случаев не превышает 20 тыс. ампер. Большинство молний с отрицательным зарядом.

По внешнему виду искровой вспышки молнии разделяют на линейные, плоские, шаровые, четочные.

Наиболее часто наблюдаются линейные молнии, среди которых различают ряд разновидностей: зигзагообразные, разветвленные, ленточные, ракетовидные и др. Если линейная молния образуется между облаком и земной поверхностью, то ее средняя длина равна 2—3 км; молния между облаками может достигать 15—20 км длины. Разрядный канал молнии, который создается под влиянием ионизации воздуха и по которому происходит интенсивное встречное течение отрицательных зарядов, скопившихся в облаках, и положительных зарядов, скопившихся на земной поверхности, имеет диаметр от 3 до 60 см.

Плоская молния представляет собой кратковременный электрический разряд, охватывающий значительную часть облака. Плоская молния не всегда сопровождается громом.

Шаровая молния — редкое явление. Образуется она в некоторых случаях после сильного разряда линейной молнии. Шаровая молния представляет собой огненный шар с диаметром обычно в 10—20 см (а иногда и до нескольких метров). По земной поверхности эта молния передвигается с умеренной скоростью и обладает тенденцией проникать внутрь зданий через дымоходы и другие небольшие отверстия. Не причинив вреда и проделав сложные движения, шаровая молния может спокойно уйти из здания. Иногда же она вызывает пожары и разрушения.

Еще более редкое явление представляют четочные молнии. Они бывают в том случае, когда электрический разряд состоит из ряда светящихся шаровидных или продолговатых тел.

Молнии нередко причиняют большой ущерб; они разрушают здания, вызывают пожары, расплавляют электрические провода, раскалывают деревья и поражают людей. Для защиты зданий, промышленных сооружений, мостов, электростанций, линий электропередач и других сооружений от прямых ударов молний применяют молниеотводы (обычно их называют громоотводами).

Наибольшее число дней с грозами наблюдается в тропических и экваториальных странах. Так, например, на о. Ява в году 220 дней с грозами, в Центральной Африке 150 дней, в Центральной Америке около 140. В СССР больше всего дней с грозами бывает на Кавказе (до 40 дней в году), на Украине и на юго-востоке Европейской части СССР. Грозовые явления обычно наблюдаются во второй половине дня, в особенности между 15 и 18 часами.

Полярные сияния. Полярные сияния представляют собой своеобразную форму свечения в высоких слоях атмосферы, наблюдаемого временами в ночное время преимущественно в полярных и приполярных странах северного и южного полушарий (рис. 65). Эти свечения являются проявлением электрических сил атмосферы и происходят на высоте от 80 до 1000 км в сильно разреженном воздухе при прохождении через него электрических зарядов. Природа полярных сияний еще полностью не разгадана  но точно установлено, что причиной их возникновения является

Полярное сияние

воздействие верхние сильно разреженные слои земной атмосферы заряженных частиц (корпускул), поступающих в атмосферу из активных областей Солнца (пятен, протуберанцев и других участков) во время вспышек солнечного излучения.

Максимальное число полярных сияний наблюдается вблизи магнитных полюсов Земли. Так, например, у магнитного полюса северного полушария в год бывает до 100 сияний.

По форме свечения полярные сияния весьма разнообразны, но обычно их делят на две основные группы: сияния безлучевой формы (однородные полосы, дуги, спокойные и пульсирующие светящиеся поверхности, диффузные свечения и др.) и сияния лучистой структуры (полосы, драпри, лучи, корона и др.). Полярные сияния безлучевой структуры отличаются спокойным свечением. Сияния же лучевой структуры, наоборот, подвижны, у них меняется как форма, так  яркость и цвет свечения. Кроме этого, сияния лучистой формы сопровождаются магнитными возбуждениями.

 

Источник—

Половинкин, А.А. Основы общего землеведения/ А.А. Половинкин.- М.: Государственное учебно-педагогическое издательство министерства просвещения РСФСР, 1958.- 482 с.

 

Предыдущая глава ::: К содержанию ::: Следующая глава

Оцените статью
Adblock
detector