Границы живого в биосфере

111. Из предыдущего ясно, что биосфера по своему строению, составу, физическим условиям среды целиком входит в область жизни.

Жизнь приспособилась к ее условиям, и в ней нет мест, где бы она так или иначе не могла в ней проявиться.

Это безусловно верно, если мы будем принимать обычные, нормальные условия биосферы, а не те временные, мимолетные их нарушения, которые являются губительными для жизни, на не могут считаться для нее характерными. В условиях биосферы недоступны для жизни кратеры вулканов во время извержений и не застывшие еще с поверхности лавы. Это в ее существовании ничтожные и временные частности.

Такими же временными явлениями должны считаться сопровождающие вулканические процессы выходы ядовитых для Жизни газов (например, хлористого или фтористого водорода) или горячие вулканические минеральные источники, лишенные жизни.

Длительные явления, например термы с температурой до 90°, уже оказываются захваченными отвечающими им своеобразными, приспособившимися к этим условиям организмами.

Неясно, не могут ли быть безжизненны земные рассолы, т. е. растворы, содержащие больше 5% солей. Самое большое скопление такой безжизненной соленой воды указывается в Мертвом море в Палестине. Но источники-рассолы, еще более богатые солями, чем оно, богаты жизнью. Ее отсутствие в Мертвом море объясняют богатством его бромом, но это гипотеза — догадка, не опирающаяся на опыты. Может быть, наше представление о Мертвом море обусловлено неполнотой наших знаний — неизученностью его микрофауны, частью бактериальной.

Несомненно, что некоторые из кислых серных или соляных природных вод, ионизация которых меньше 10-1% Н+, должны быть безжизненны. Они образуют в общем ничтожные водоемы.

112. В общем можно считать, что земная оболочка, в которой наблюдается живое вещество, всецело отвечает полю существования жизни. Это оболочка непрерывная подобно атмосфере, и этим она отличается от таких прерывчатых оболочек, какой является гидросфера.

Но земное поле устойчивости жизни далеко не целиком занято живым веществом. Мы наблюдаем медленное движение жизни в новые области, завоевание ею этого поля в течение геологического времени.

В земном поле устойчивости жизни надо отличить, во-первых, область временного проникновения — без быстрой гибели — живых организмов; во-вторых, область длительного их существования, неизбежно связанного с проявлением размножения.

Крайние пределы жизни в биосфере должны определяться существованием в ней условий, непреодолимых для всех организмов.

Для этого достаточно, чтобы даже одно какое-нибудь условие (независимое переменное равновесия) достигло величины, непреодолимой для живого вещества, будь то температура, химический состав или ионизация среды, длина волн излучений.

Нельзя не отметить, что такие определения не могут иметь безусловного характера. То, что мы называем приспособляемостью организма, его умением защищаться от вредных условий среды, огромно, и пределы его нам неизвестны, особенно если мы примем во внимание время.

Устанавливая эти пределы на основании нами сейчас наблюдаемых возможностей выживания, мы неизбежно всегда логически вступаем в область экстраполяции, всегда область скользкую и неверную.

В частности, человек, одаренный разумом и умело направляемой волей, может достигать непосредственно или посредственно областей, недоступных для остального живого.

При единстве всего живого, которое, как мы видим, бросается в глаза на каждом шагу при охвате жизни как планетного явления, такое свойство Homo sapiens не может быть рассматриваемо как случайное явление.

Его существование еще больше заставляет относиться осторожно к незыблемости в биосфере границ жизни.

113. Такое определение пределов жизни, основанное на возможности нахождения и существования организмов в их современных формах и амплитудах приспособляемости, ясно указывает характер биосферы как оболочки, ибо исключающие жизнь условия проявляются на всей поверхности планеты одновременно.

Достаточно поэтому определить только верхний и нижний пределы поля жизни.

Верхний предел обусловливается лучистой энергией, присутствие которой исключает жизнь.

Нижний предел связан с достижением высокой температуры, ставящей предел жизни с неменьшей необходимостью.

В пределах, этим путем установленных, жизнь охватывает — не целиком, правда, — одну термодинамическую оболочку, три химические и три фазовые.

Значение этих последних — тропосферы, гидросферы и верхней части литосферы — наиболее ярко сказывается в ее явлениях, и их мы положим в основу нашего изложения.

114. Жизнь, по-видимому, ни в каких своих современных нам известных формах не может зайти за пределы стратосферы, по крайней мере верхних ее частей.

Как видно из табл. 1, здесь начинается другая парагенетическая оболочка, где едва ли существуют какие бы то н» было химические молекулы или еще более сложные их комплексы. Это область высочайшего разрежения материи, даже если принимать новые исчисления проф. В. Г. Фесенкова (1923— 1924), дающие для нее большие количества материи, чем это принимали раньше. Проф. В. Г. Фесенков полагает, что на высоте 150—200 км стратосфера заключает тонну вещества в 1 км3. Новые условия нахождения атомов этой разреженной материи не являются только следствием ее разрежения — уменьшения столкновения газовых частиц, удлинения их свободных траекторий. Они связаны с могучим действием ультрафиолетовых и, может быть, других лучей Солнца (а может быть, и космических пространств), беспрепятственно достигающих этих крайних пределов нашей планеты.

Мы знаем, что ультрафиолетовые лучи являются чрезвычайно активными химическими деятелями. В частности, лучи очень коротких волн, меньше 200 mµ (160—180 mµ), уничтожают всякую жизнь, самые устойчивые споры в сухой или безвоздушной среде.

По-видимому, несомненно, что данные лучи освещают эти далекие области планеты.

115. Ниже они не проходят, так как совершенно поглощаются озоном, образующимся постоянно в стратосфере в относительно значительных количествах из свободного кислорода и, может быть, воды под влиянием тех же ультрафиолетовых излучений Солнца, которые он задерживает и которые губительны для жизни.

Озон стратосферы образовал бы, по С. Фабри и Г. Бюссону, слой в 5 мм мощностью, если бы он был собран весь вместе в чистом виде. Но и в рассеянных атомах эти количества озона достаточны, чтобы не пропустить всех вредных для жизни излучений.

Сколько бы ни разрушался озон, он постоянно восстанавливается, так как лучи колебаний короче 200 mµ встречают все время в стратосфере, в нижних ее слоях, избыточное количество атомов кислорода.

Жизнь защищена в своем существовании экраном озона в 5 мм мощностью, являющимся естественной верхней границей биосферы.

Характерно, что необходимый для создания озона свободный, кислород образуется в биосфере только биохимическим путем; он должен исчезнуть из нее при прекращении жизни. Жизнь, создавая в земной коре свободный кислород, тем самым создает озон и предохраняет биосферу от губительных коротких излучений небесных светил.

Ясно, что новейшее проявление жизни — культурный человек—может предохранить себя иначе и проникнуть безнаказанно за озонный экран.

116. Озонный экран определяет только верхнюю границу возможной жизни.

В действительности она прекращается в атмосфере гораздо ниже.

Зеленые автотрофные растения не поднимаются над зелеными древесным и травяным покровом суши. Нет зеленых клеток, развивающихся в воздушной среде. Случайно и невысоко, в брызгах океана, подымаются зеленые клетки планктона.

Выше древесной растительности организмы могут попадать или механически или благодаря выработанным приспособлениям летания. Чрезвычайно редко этим путем могут далеко и надолго проникать в атмосферу зеленые организмы.

Мельчайшие споры, например хвойных или тайнобрачных, лишены хлорофилла или бедны им, а это, вероятно, величайшие массы зеленых организмов, разносимые ветром и поднимающиеся иногда не надолго на довольно значительную высоту.

Главная масса живого вещества, проникающего в атмосферу, состоит из живой материи второго порядка. К ней принадлежат все летающие организмы. Зеленый слой нашей планеты, где начинается превращение солнечных радиации в земную химическую энергию, расположен на поверхности суши и в верхнем слое океана; он не поднимается далеко в атмосферу.

В геологическое время, однако, он расширил в ней область своего нахождения. Ибо в стремлении уловить наибольшее количество солнечной энергии зеленый растительный организм проник далеко в нижние слои тропосферы; он поднялся на десятки, более — сотни метров от ее поверхности в форме высоких деревьев и их скоплениях в лесных массивах. Эти формы жизни выработаны организмами, по-видимому, в палеозое.

117. Жизнь проникает в атмосферу и долго в ней держится главным образом в виде мельчайших бактерий и спор, в летающих формах животных.

Относительные ее концентрации, главным образом в виде латентных форм (спор микроскопических организмов), могут наблюдаться только в «пылевой атмосфере», т. е. в тех частях воздушного покрова, куда проникает пыль с земной поверхности. Пылевая атмосфера связана главным образом с сушей. Эта пылевая атмосфера, по А. Клоссовскому (1910), достигает 5 км, а по О. Менгелю (Mengel, 1922), значительные скопления пыли не поднимаются выше 2,8 км. Главная часть пыли, однако, косная материя.

На горных вершинах воздух очень беден организмами, все же они там существуют. По определению Л. Пастера, в среднем здесь находится не больше 4—5 микробов, патогенных, открываемых питательными жидкостями, в 1 м3. М. Флемминг в воздухе на высоте в 4 км обнаружил в среднем не более одного патогенного микроба на 3 л. По-видимому, в верхних слоях микрофлора воздуха обедняется бактериями и обогащается плесневыми и дрожжевыми грибками (В. Л. Омелянский).

Не может быть сомнения, что эта микрофлора проникает за средние пределы пылевой атмосферы (5 км), но число точных наблюдений здесь, к сожалению, ничтожно. Она может достигать пределов тропосферы (9—13 км), так как сюда достигают наблюдаемые нами на поверхности Земли движения газов — ветры и токи воздуха.

Едва ли эти высокие поднятия над поверхностью Земли имеют какое-нибудь значение в ее истории, так как огромное большинство этих организмов находится в латентном состоянии и они едва заметны в массе, хотя и разреженной, косного газа, среди которого они рассеяны.

118. Неясно, заходят ли за пределы тропосферы животные. Правда, они поднимаются иногда на большие расстояния, выше высочайших горных вершин (всегда лежащих еще в пределах тропосферы), т. е. доходят до ее верхней границы.

Так, по наблюдениям А. Гумбольдта, кондор в своем полету поднимается до 7 км от земной поверхности; он наблюдал мух на вершине Чимборасо (5882 м).

Эти наблюдения А. Гумбольдта и некоторых старых натуралистов отрицались современными орнитологами, изучавшими на проходных станциях перелеты птиц, но новейшие наблюдения Уолластона (1923), натуралиста английской экспедиции на Эверест, не оставляют сомнений, что, некоторые горные хищники поднимаются или парят около вершин высочайших гор, выше 7 км (7540 м).

По-видимому, это немногие, отдельные виды птиц. Вдали от горных вершин и даже в горных областях птицы едва ли долетают до 5 км. Наблюдения летчиков указывают поднятия до 3 км (для орла).

Бабочки наблюдались на высоте 6,4 км, пауки — до 6,7 км, тли — до 8,2 км, из растений Arenaria muscosa и Delphinium glaciateна высоте 6,2—6,3 км (М. Hingston, 1925).

119. Дальше всего проникает в стратосферу человек, и он несет с собой вполне бессознательно и неизбежно следующие за ним, в нем и на нем самом или в его изделиях формы жизни.

Область проникновения человека все расширяется с развитием воздухоплавания, и пределы ее выходят уже из области жизни, определяемой озоновым покровом.

Выше всего поднимаются шары-зонды, всегда заключающие в своем материале представителей жизни. 17 декабря 1913 г. такой шар-зонд, пущенный в Павии, достиг высоты 37,7 км.

Сам человек в своих аппаратах поднимается выше высочайших гор. Уже в воздушных шарах Г. Тиссандье (1875) и Ж. Глэшер (1868) почти достигли этого предела, первый достиг да 8,6 км, второй — 8,83 км.

С развитием аэропланов высота поднятия достигла пределов стратосферы. Француз М. Каллизо и американец М. Мак-Реди (1925) достигли 12—12,1 км, и, очевидно, эта высота быстро будет превзойдена. Постоянные поселения человека, его деревни встречаются на высоте 5,1—5,2 км (Перу, Тибет), его железные дороги — на высоте 4,77 км (Перу), его возделанные поля — на высоте 4,65 км.

120. Подводя итоги, можно утверждать, что жизнь, проявляющаяся в биосфере, достигает своего земного предела — озон-нового экрана — только для редких отдельных своих неделимых. В главной своей массе не только стратосфера, но и верхние слои тропосферы безжизненны.

Нет ни одного организма, который всегда бы жил в воздушной среде. И лишь тонкий слой атмосферы, исчисляемый десятками метров, обычно много меньше ста метров, может считаться переполненным жизнью.

Едва ли можно сомневаться, что и это завоевание воздушной среды есть новое явление в геологической истории планеты: оно стало возможным только с развитием сухопутных организмов, сперва растений (в докембрии?), затем насекомых, летающих позвоночных (в палеозое?), с мезозоя — птиц. С самых древних периодов есть указания на механические переносы микрофлоры и спор. Но лишь с появлением культурного человечества живое вещество сделало крупный шаг к завоеванию всей атмосферы.

Атмосфера не является самостоятельной областью жизни. Ее тонкие нижние слои составляют, с биологической точки зрения, части прилегающих к ним слоев гидросферы и литосферы, причем только в этой последней они входят в сгущения — пленки — жизни.

Огромное влияние живого вещества на историю атмосферы связано не с непосредственным его нахождением в газовой среде, но с газовым его обменом — с созданием им новых газов, выделяемых в атмосферу, и с их поглощением из атмосферы. Живое вещество влияет на химию атмосферы, меняя тонкий прилегающий к земле слой газа или газы, растворенные в природных водах.

Конечный грандиозный результат — охват всей газовой оболочки планеты энергией жизни, повсеместное проникновение газообразных продуктов жизни (прежде всего свободного кислорода) — является по существу следствием свойств газообразного вещества, а не свойств живого вещества.

121. Теоретически не менее резкой и ясной, чем верхняя, определяемая озоновым экраном, должна быть и нижняя граница жизни на Земле.

Она должна соответствовать той высокой температуре, при которой организм ни в каком случае не может существовать и развиваться, в зависимости от свойств соединений, из которых он составлен.

Температура в 100° уже, несомненно, представляет такую преграду. Это температура, которая достигается на глубине 3 — 3,5 км от земной поверхности, может быть местами даже меньшей, около 2,5 км. В среднем можно считать, что глубже 3 км от земной поверхности живые существа в их современном виде существовать не могут.

Ниже уровня моря слой в 100° опускается, так как средняя глубина океана достигает 3,8 км, причем температура дна близка к 0°.

Очевидно, в этих точках земной коры предельная для жизни температура не будет встречена в среднем раньше 6,5—7 км, если земной градиент будет одинаков, В действительности повышение температуры идет здесь быстрее, и едва ли возможный для жизни слой превысит 6 км, считая с уровня океана.

Несомненно, предел в 100° есть чисто условная граница. На земной поверхности нам известны организмы, размножающиеся при температурах выше 70—80°, но и здесь организмы, приспособившиеся к длительной жизни при 100°, не встречены.

Таким образом, нижняя граница биосферы в самом крайнем пределе в среднем едва ли превысит 2,5—2,7 км на суше и 5—5,5 км в области океанов.

По-видимому, эта граница должна определяться температурой, а не химическим составом, так как отсутствие свободного кислорода не может служить препятствием для жизни. Свободный кислород на суше кончается много раньше, едва ли в среднем идет на несколько сот метров от земной поверхности: здесь глубже 500 м в среднем не могут жить иные организмы, кроме анаэробных бактерий.

122. Но высокая температура глубоких слоев составляет лишь теоретический предел биосферы, так как другие факторы в своей совокупности влияют гораздо более могущественно на распространение жизни.

К тому же, как указывалось, области планеты, лишенные света, захватываются геологически более молодыми организмами, и этот захват далеко не достиг своего предела.

Мы наблюдаем здесь такое же явление, какое указано была и для верхней границы: жизнь медленно приближается к своим глубинным пределам в течение геологического времени, но их еще далеко не достигает. Она достигает геоизотермы в 100° еще менее, чем озонового экрана.

Очевидно, зеленые организмы, требующие света для своего развития, не могут идти за пределы освещенной Солнцем поверхности планеты. Ниже всего могут идти только гетеротрофные организмы и автотрофные бактерии.

Жизнь разно идет вглубь на суше и в океанах. Животная жизнь в океанах глубже всего проникает в своем рассеянии; это проникновение зависит от рельефа дна. По-видимому, все же в заметных своих представителях она не идет глубже 7 км. Еще на глубине 6035 м был найден Hyphalaster parfaiti — морской еж.

Вероятно, плавающие глубоководные формы могут заходить в самые большие океанические глубины, но находки со дна глубже 6,5 км пока неизвестны.

Бактерии в рассеянном состоянии проникают всю водную толщу (найдены глубже 5,5 км), концентрируясь в морской грязи. Их присутствие в морской грязи наибольших глубин не доказано, но чрезвычайно вероятно.

123. Несравненно менее глубоко проникает жизнь суши, прежде всего потому, что нигде здесь не проникает так глубоко в земную кору свободный кислород.

В океане свободный кислород в водном газовом растворе, в котором его процентное содержание по отношению к азоту всегда выше, чем то же отношение этих газов в атмосфере, находится в неразрывной связи с наружной атмосферой. Кислород достигает самых больших глубин океана — до 10 км, и всякое уменьшение его содержания непрерывно, правда с опозданием, пополняется новым его приходом из атмосферы путем растворения и диффузии.

На суше свободный кислород быстро исчезает с глубиной, поглощается организмами или сильно окисляющимися соединениями, главным образом органическими. Исследование вод, приходящих с глубин, близких к 1—2 км, обычно уже не дает в их газах свободного кислорода. Между вадозной водой, содержащей свободный кислород воздуха, и водой фреатической, его лишенной, существует резкий перерыв, до сих пор в точности не выясненный.

Свободный кислород проникает обычно всю почву и часть подпочвы. Верхняя граница свободного кислорода в болотистых почвах и болотах ближе к поверхности.

По М. Гассельману, болотистые почвы наших широт уже на глубине 30 см не должны содержать свободного кислорода. В подпочвах свободный кислород идет на глубину нескольких метров, иногда до 10 м и даже больше, если он не встречает на своем пути препятствий в виде твердых пород, которые поглощают свободный кислород. Следы его могут проникнуть в верхние части этих пород, которые всегда соприкасаются с водой из окружающей их среды.

Свободные пустоты и трещины, доступные проникновению воздуха, в исключительных случаях достигают по вертикальному направлению глубины в несколько сот метров. Глубже всего сейчас идут шахты и буровые скважины — создания человеческой культуры, превышающие 2 км по вертикальному направлению, но их значение в масштабе биосферы ничтожно.

К тому же сведенные к уровню океана такие образования в подавляющем большинстве случаев лежат выше этого уровня. Самые большие низины суши по отношению к этому уровню — дно Байкала (богатое жизнью), настоящего пресного моря, превышает километр (более 1050 м).

Очевидно, даже принимая во внимание анаэробную жизнь; нигде на суше живое не достигает тех глубин планеты, которые ему доступны в гидросфере. А между тем даже те глубины лежат далеко от тепловых пределов теоретического поля жизни.

По-видимому, жизнь в глубоких слоях континентов никогда не достигает средней глубины гидросферы (3,8 км). Правда, новые исследования происхождения нефтей и сероводорода очень понижают нижнюю границу анаэробной жизни. Генезис этих фреатических минералов, по-видимому, является биогенным и происходит при температуре, которая заметно выше, чем на земной поверхности. Но даже если бы встреченные здесь организмы (бактерии) были термофильными организмами, они все же жили бы при температуре, близкой к 70°; это еще очень далеко от геоизотермы в 100°.

124. Мы видим, таким образом, что количество живого преобладает в гидросфере не только благодаря тому, что она по размерам своей поверхности является господствующей частью области жизни, но и потому, что жизнь в ней констатирована на всем ее протяжении, в мощном слое до 10 км в пределе, в среднем в слое в 3,8 км. Между тем на суше, площадь которой составляет всего 21% поверхности планеты, область жизни в предельных проявлениях не достигает и 1,5 км ниже земной поверхности, а в среднем образует слой в немного сотен метров. И в этом тонком слое суши, в котором встречаются живые организмы, жизнь лишь в единичных случаях спускается ниже уровня моря.

В планетном масштабе жизнь на суше оканчивается на уровне океана, в гидросфере она охватывает слой на 3,8 км ниже.

 

Источник—

Вернадский, В.И. Биосфера/ В.И. Вернадский. – М.: Мысль, 1967.– 374 с.

 

Предыдущая глава ::: К содержанию ::: Следующая глава

Оцените статью