big-archive.ru

Большой информационный архив

                       

Температура воздуха в тропосфере и стратосфере земного шара

Выше мы познакомились с особенностями распределения средней температуры воздуха у поверхности земли зимой и летом. Поле температуры во всей тропосфере принципиально мало отличается от поля температуры у земной поверхности. Однако в стратосфере режим температуры иной, поскольку условия прогревания воздуха здесь отличны от тропосферных.

Для удобства представления распределения средней температуры воздуха во всей толще тропосферы, а также в крупных слоях стратосферы на всем земном шаре пользуются картами относительной барической топографии. Этими картами изображаются высоты между поверхностями одинакового атмосферного давления (изобарическими поверхностями). Высоты эти, выраженные в геопотенциальных метрах V, пропорциональны средней температуре слоя между взятыми изобарическими поверхностями. Поэтому изолинии на картах относительной барической тополь графии (ОТ) по существу являются изотермами средней температуры воздуха во взятом слое. Малым значением геопотенциала соответствуют области холода, большим значениям— области тепла.

Тропосфера. На рисунках 22 и 23 представлены средние карты относительной топографии между поверхностями 300 и 1000 мб (ОТ 300/1000) для января и июля. Так как поверхность 300 мб расположена вблизи уровня 9 км, а 1000 мб — у поверхности земли, то приведенные здесь карты характеризуют среднюю температуру слоя воздуха толщиной около 9 /еж, т. е. значительную часть тропосферы.

Рассмотрим некоторые особенности распределения средней температуры в тропосфере в январе и июле по приведенным картам относительной топографии. Независимо от времени года в соответствии с условиями притока солнечной энергии в Арктике и Антарктике воздух значительно холоднее, чем в низких широтах. Поэтому горизонтальные градиенты температуры во всей тропосфере направлены от низких широт к высоким, а широкая область тепла занимает экваториальную зону. Северной зимой (рис. 22) она несколько сдвинута в сторону южного полушария, а северным летом (рис. 23) — в сторону северного полушария. Вместе с тем густота изогипс указывает, что зимой как в северном, так и в южном полушариях величина горизонтального градиента температуры больше, чем летом.

Распределение средней январской и июльской температуры в нижнем 9-километровом слое атмосферы несколько отличается от распределения средней температуры в те же месяцы у поверхности земли. На картах относительной топографии никак не отражена весьма сложная форма изотерм, вызванная влиянием подстилающей поверхности, которую мы видели на картах температуры у поверхности земли (см. рис. 16 и 18). Однако влияние материков и океанов распространяется на всю тропосферу, что четко проявляется в конфигурации изогипс относительного геопотенциала, которые в январе располагаются не вдоль широт, а значительно изогнуты. При этом над охлажденными материками северного полушария располагаются ложбины холода, а над тепловыми океанами — гребни тепла. Средняя температура 9-километрового слоя в январе в экваториальной зоне — около 0°, а в Арктике и Антарктике она равна —39° и —30° соответственно.

В июле температура вдоль параллелей над материками и океанами в северном полушарии почти выравнивается. Это находит отражение на форме изогипс ОТ 300/1000, которые принимают почти широтное положение (рис. 23). Небольшие ложбины холода можно обнаружить лишь над северными, относительно холодными частями Атлантики и Тихого океана. В низких широтах над Северной Америкой и югом Азии вследствие интенсивного прогревания воздушных масс обособляются замкнутые области тепла.

Средняя температура слоя летом в тропиках превышает 0°, а в Арктике и Антарктике достигает —20° и —43° соответственно.

Те же особенности структуры поля температуры можно обнаружить на материках южного полушария, с той только разницей, что там они выражены слабее ввиду малых размеров материков.

Стратосфера. За последние годы существенно изменилось представление о стратосфере как о спокойной среде с малой

Карта относительной топографии между поверхностями 300 и 1000 мб. Январь

Карта относительной топографии можду поверхностями 300 и 1000 мб. Июль

турбулентностью и изотермией. Уже в начале 50-х годов ряд авторов отмечал, что на режим температуры в стратосфере, помимо лучистого теплообмена, оказывает влияние горизонтальный перенос воздуха (адвекция) и адиабатические процессы сжатия и расширения воздуха, обусловленные вертикальными движениями.

Радиозондовые и ракетные наблюдения в период Международного Геофизического Года (МГГ) и позднее показали, что температура и ветер в стратосфере претерпевают резкие изменения не только в зависимости от сезонов года, но и внутри каждого из них, особенно в холодное время года. Исследования показали, что сезонное поле температуры определяется главным образом лучистым теплообменом, а его внутрисезонные изменения — адвекцией и динамикой атмосферных процессов.

Карты относительной топографии выше тропопаузы дают общую картину распределения температуры. Здесь мы ограничимся приведением лишь двух карт относительной топографии, представляющих поле температуры в слое между изобарическими поверхностями 10 и 100 мб, т. е. между высотами 30 и 16 км, для января и июля (рис. 24 и 25).

Различия между этими и предшествующими картами (рис. 22 и 23), представляющими поле температуры за те же месяцы в тропосфере, выражаются в, неодинаковой густоте изолиний и несовпадении очагов холода и тепла. На картах января (рис. 24 и 22) в стратосфере, как и в тропосфере, на севере расположен очаг холода, что, как уже указывалось, объясняется охлаждением воздуха в слое озона в условиях полярной ночи. Однако конфигурация изогипс (изотерм) различна, так как в тропосфере температура воздуха определяется притоком тепла от подстилающей поверхности (холодные материки и теплые океаны), а в стратосфере — непосредственным поглощением солнечной энергии. Поэтому здесь в январе очаг холода обнаруживается в центре Арктики, где стоит полярная ночь. Вторая широкая область холода охватывает почти все низкие широты — там, где тропосфера распространяется до высот 16—18 км, температура воздуха понижается до —70°, —80°. Сравнительно теплее в стратосфере средних широт северного полушария, поскольку выше тропопаузы, на уровне 10—11 км, температура не подвергается существенным изменениям с высотой, оставаясь в среднем в пределах —50°, —60°.

Интересно, что северной зимой (декабрь — февраль) в стратосфере над Антарктикой образуется обширная область тепла, обусловленная нагреванием воздуха в слое озона в течение полярного дня южным летом.

К июню — августу поле температуры в слое 16—30 км (ОТ10100) резко меняется (рис. 25). Как и в тропосфере, в нижней стратосфере над высокими широтами южного полушария формируется область холода, вызванная охлаждением воздуха в слое озона в условиях полярной ночи. В Арктике в это время года, наоборот, температура воздуха достигает наибольших величин, а экваториальная зона, как и в декабре — феврале, является очагом холода.

Заметим, что зона тепла обнаруживается в южном полушарий между широтами 20 и 40°, возникновение которой аналогично образованию такой же области в северном полушарии в декабре — феврале. Еще небольшой очаг тепла возникает над Центральной Азией благодаря интенсивному нагреву воздуха над пустынями и горными хребтами.

Таким образом, полоса сравнительно высоких температур в обоих полушариях зимой характерна для нижней половины стратосферы. Она выделяется на фоне низких значений температур полярной области и экваториальной зоны. В высоких широтах область холода формируется во время полярной ночи вследствие охлаждения воздуха в слое 20—30 км до —65°, —75° в Арктике и до —75°, —80°— в Антарктике. Низкие температуры в экваториальной зоне связаны с высоким положением тропопаузы.

Вместе с тем данные ракетного зондирования атмосферы показывают, что упомянутые зоны тепла в стратосфере обнаруживаемые зимой в обоих полушариях между широтами 30 и 50°, с высотой смещаются в сторону низких широт. Это нашло отражение на вертикальном разрезе атмосферы (рис. 5). Например, на высоте 30 км эта зона тепла уже находится над тропиками, а на высоте 40 км над экватором теплее, чем над остальными частями зимнего полушария. Наиболее высокие температуры (около 5°) наблюдаются на уровне 50 км над низкими широтами. На этом уровне над средними широтами они составляют в среднем —10°, —20°, а в районе полюса ниже —20°.

Как показывает карта ОТ 10/100 (рис. 24), упомянутая выше зимняя зона тепла в северном полушарии над Тихим океаном смещена к северу, к широтам 40—60° и обособлена. Внутри этой области температура воздуха заметно выше, чем над всеми другими районами полушария.

В южном полушарии нет даже признаков подобной аномалии температуры в стратосфере. Здесь зона тепла зимой ограничена широтами 20—40° ю. ш., а градиент температуры направлен из высоких широт в сторону экваториальной зоны. Характер поля температуры в северном полушарии определяется, главным образом, условиями атмосферной циркуляции.

Летом распределение температуры в нижней стратосфере резко отличается от зимнего (см. рис. 25). В соответствии с условиями теплообмена летом и радиационных условий полярного дня воздух в северном полушарии нагревается настолько, что горизонтальный градиент средней температуры в стратосфере

Карта относительной топографии между поверхностями 10 и 100 мб. Январь

Карта относительной топографии между поверхностями 10 и 100 мб

бывает направлен от полюса к экватору. Как видим, это характерно для обоих полушарий.

В средней стратосфере, т. е. в слое между поверхностями 10 и 100 мб, картина по существу не меняется, поскольку условия лучистого теплообмена в формировании поля температуры приблизительно одинаковы в нижней и средней стратосфере.

 

Предыдущая глава ::: К содержанию ::: Следующая глава

 

                       

  Рейтинг@Mail.ru    

Внимание! При копировании материалов ссылка на авторов книги обязательна.